Effect of polyamide 6 on the mechanical behavior of thermoplastic polyurethanes/polyamide 6 blends

Author:

Pham Nga Thi-Hong1ORCID

Affiliation:

1. Mechanical Engineering Faculty, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam

Abstract

Ductility and tensile strength are among the basic mechanical properties of polymers. Generally, it is difficult to enhance the ductility without significantly reducing the tensile strength. In this study, thermoplastic polyurethane (TPU) is mixed with 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% polyamide 6 (PA6). The results show that the sample containing 100% TPU has the largest elongation of 690.5%. When PA6 is added, the elongation decreases gradually to 635.0%, 623.1%, 529.5%, 476.0%, 391.3%, and 242.8%, corresponding to 2.5%, 5%, 7.5%, 10%, 12.5%, and 100% PA6, respectively. The tensile strengths are 36.7, 33.8, 29.4, 26.5, 23.1, and 24.9 MPa, corresponding to 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% PA6 samples, respectively. The tensile strength decreases gradually when the PA6 content is increased. Notably, the tensile strength of the 12.5% PA6 sample increases compared to the 10% PA6 sample. In addition, the hardness of the TPU/PA blend increases slightly as the PA6 ratio is increased. Finally, scanning electron microscope images demonstrate that PA6 particles act as particles dispersed or dissolved in TPU/PA blends.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of sliding velocity on microscratch responses of thermoplastics by Berkovich indenter;Polymer Bulletin;2022-08-17

2. Effects of a new compatibilizer on the mechanical properties of TPU/PEBA blends;European Polymer Journal;2022-07

3. Soft 3D printing of thermoplastic polyurethane: Preliminary study;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3