Single sensor three point on-line measurement method of precision rolling bearings

Author:

Hu Lai12ORCID,Zha Jun12,Song Peilong3,Chen Yaolong12

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China

2. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China

3. China Ship Scientific Research Center, Wuxi, Jiangsu, P.R. China

Abstract

With the continuous development of machining methods, it is necessary to explore grinding and measuring methods to ensure the fatigue life and improved accuracy of bearings. In this study, a single-sensor three-point (SSTP) on-line outer-diameter measuring instrument was designed to ensure the consistency of the machining accuracy of precision bearing rings. Moreover, the mathematical model of the measuring instrument was established. The roundness and cylindricity error measurements of the ring outer diameter of precision bearings A and B form different manufacturers of countries were compared and analyzed. In addition, the accuracy measurement of the experimental grinder was investigated through multidimensional experiments. The results demonstrated a measuring and repetitive accuracy of ±1.25 and 1 μm, respectively. The measuring results conformed to the 3 б principle. The measured outer diameter was within the actual value of the workpiece outer diameter ±3 б, and the accuracy was over 99.73%. The instrument did only measure the outer diameter, but also measured the waviness error. The outer diameter and rotating speed did not clearly affect the measuring accuracy. The use of a lubricating fluid reduced the contact resistance of the on-line measuring instrument and significantly reduced the absolute error of outer diameter measurement, which is beneficial in improving the outer diameter measurement accuracy of the instrument.

Funder

National Key R&D Program of Manufacturing Basic Technology and Key Components

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3