Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup

Author:

Wang L1,Long H1,Ashley D2,Roberts M2,White P2

Affiliation:

1. School of Engineering and Computing Sciences, Durham University, Durham, UK

2. Metal Spinners Group Limited, Newcastle, UK

Abstract

In this study, wrinkling failure in conventional spinning of a cylindrical cup has been investigated by using both finite element (FE) analysis and experimental methods. FE simulation models of a spinning experiment have been developed using the explicit finite element solution method provided by the software Abaqus. The severity of wrinkles is quantified by calculating the standard deviation of the radial coordinates of element nodes on the edge of the workpiece obtained from the FE models. The results show that the severity of wrinkles tends to increase when increasing the roller feed ratio. A forming limit study for wrinkling has been carried out and shows that there is a feed ratio limit beyond which the wrinkling failure will take place. Provided that the feed ratio is kept below this limit, the wrinkling failure can be prevented. It is believed that high compressive tangential stresses in the local forming zone are the causes of the wrinkling failure. Furthermore, the computational performance of the solid and shell elements in simulating the spinning process are examined and the tool forces obtained from wrinkling and wrinkle-free models are compared. Finally, the effects of the feed ratio on variations of the wall thickness of the spun cylindrical cup are investigated.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Feedrate on Microstructure and Hardness of Conventionally Spin-Formed 6061-O Plate;The Minerals, Metals & Materials Series;2024

2. An online intelligent method for roller path design in conventional spinning;Journal of Intelligent Manufacturing;2022-09-02

3. The Spinning Speed Influence on the Counter-Roller Spinning Process;2022 International Conference on Control, Robotics and Informatics (ICCRI);2022-04

4. An analytical model integrated with toolpath design for wrinkling prediction in conventional spinning;Journal of Materials Processing Technology;2022-02

5. Deformation mode and wall thickness variation in conventional spinning of metal sheets;International Journal of Machine Tools and Manufacture;2022-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3