Thermal–mechanical coupled finite element analysis of aluminum alloy grid sheet in high-speed milling

Author:

Liu Zhao1,Peng Weiping1,Guo Lijie2,Dong Fengbo2,Ma Jiangwei1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan, P. R. China

2. Shanghai Space Equipment Manufacture Group, Shanghai, P. R. China

Abstract

Because of notable distortion in high-speed milling of grid sheet, it is difficult to choose a feasible processing scheme for this kind of workpiece. This article attempts to present a method to analyze the stress and deformation of grid sheet under different processing schemes based on a coupled mechanical–thermal finite element model, which provides a convenient and flexible platform to evaluate the performance of processing scheme in high-speed milling and optimize the cutting conditions. After a thorough analysis of the whole milling process of grid sheet, the tool path was discretized to make it convenient for the modeling of material removal process. An analytical thermal load calculation method and an experimental mechanical load calculation method were adopted to determine the loads exerted on the grid sheet. The constraint of the fixture was also considered, and finally, an ANSYS Parametric Design Language–based finite element method model was established. Based on this model, stresses and deformations under a given processing scheme with or without considering heat effect were compared, and it shows that cutting heat has great effect on the magnitude and distribution of deformation and stress. In addition, effects of some parameters on machining quality were investigated, and it was found that radial depth of cut has more impact than other parameters.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3