Influence of cutting tool geometrical parameters on tool wear in high-speed milling of Inconel 718 curved surface

Author:

Ma Jian-wei1,Jia Zhen-yuan1,He Guang-zhi1,Liu Zhen1,Zhao Xiao-xuan1,Qin Feng-ze1

Affiliation:

1. Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, School of Mechanical Engineering, Dalian University of Technology, Dalian, P.R. China

Abstract

High-speed machining provides an efficient approach for machining Inconel 718 with high quality and high efficiency. For high-speed milling of Inconel 718 curved surface, the geometrical characteristics are changing continuously leading to a sharp fluctuation of cutting force, which will aggravate the tool wear. As the wear mechanism of coated cutting tool is seriously affected by the cutting tool geometrical parameters, suitable geometrical parameters of cutting tool should be selected to avoid the cutting tool from being worn out very quickly. In this study, the influence of cutting tool geometrical parameters on tool wear in high-speed milling of Inconel 718 curved surface is investigated with coated cutting tool, and the cutting force in milling process is also analyzed. The results show that the cutting force variation can manifest the tool wear degree, and the failure type of coated cutting tool in plane milling and curved surface milling after the same cutting length is different. Furthermore, the cutting tool geometrical parameters seriously affect the tool wear and the tool life in high-speed milling of Inconel 718 curved surface. Concretely, the small rake angle has greater strength and has superiority, the relief angle increasing can enhance the tool life, and the tool life is decreased with the increasing of helix angle for the cutting tool, whose helix angle is larger than 30°. This study provides a theoretical basis for cutting tool wear mechanism and cutting tool geometrical parameter selection in high-speed milling of Inconel 718 curved surface, so as to guarantee the machining efficiency in high-speed milling of Inconel 718 curved surface.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3