Characterization and functional evaluation of surface texture of micro eccentric shaft based on multi-index

Author:

Cheng Minghui1ORCID,Jiao Li1,Yan Pei1ORCID,Niu Zhongke2,Qiu Tianyang1,Wang Xibin1

Affiliation:

1. Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing, China

2. Aerospace System Engineering Shanghai, Shanghai, China

Abstract

Micro eccentric shaft has important application in many high-tech fields because of its small specific gravity, material, and energy saving. The machined surface texture has an indispensable influence on the surface integrity and the final functional capability. However, due to the micro scale and weak rigidity, it is difficult to characterize the surface texture and evaluate the functionality by traditional quantitative parameters. In order to comprehensively realize the surface texture characterization and functional analysis, a mathematical model is established to simulate the surface texture machined with different cutting tools. Then the surface microscopic profile and functional performance of the surface texture are analyzed by amplitude distribution function (ADF) and bearing area curve (BAC), and the surface texture is also evaluated by fractal dimension, which can avoid the negative effects of scale and resolution. Furthermore, power spectrum density (PSD) is utilized to analyze the relationship between the process dynamic state and geometrical specification of the surface texture. The validity of experimental results shown that the microscopic height distribution of surface machined by flat end milling cutter tends to be more random and there are more microscopic geometric features than that of the ball end milling cutter. The machined surface obtained by the flat end milling cutter has better load bearing, wear resistance, and liquid retention capability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3