Thermal–mechanical coupling model-based dynamical properties analysis of a motorized spindle system

Author:

Zhang Peng1,Chen Xiaoan1

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

Abstract

The thermal expansion phenomenon of bearings happening on a motorized spindle has a great effect on its dynamical properties. Hence, there is a vital need to analyze the relationship between its cooling condition and dynamical behaviors for the system. A thermal–mechanical coupling model of a motorized spindle system is presented in this article, which consists of three coupling sub-models: bearing, thermal and spindle dynamical model. The bearings, taking the thermal expansion into count, provide the shaft with support stiffness which influences the spindle dynamical properties. And their power loss is one of the main heat sources of the system while the other one is from the motor. In the thermal model, the cooling condition and heat generation jointly determine the temperature rise and thermal expansion. Thus, all of the sub-models interact and the system becomes an integrated thermal–mechanical coupling model. The proposed model is investigated by a solution procedure and validated experimentally. And the effects of the rotational speed, cooling water flow rate and oil-air pressure on the spindle dynamical properties are provided by this mathematical model as well as the experiments. The good agreement of results from them indicates that this model is capable of predicting the dynamical properties of the motorized spindle system. Then some feasible methods to improve the dynamical behaviors of the system are obtained.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3