State-of-the-art of advanced gas metal arc welding processes: Dissimilar metal welding

Author:

Mvola Belinga1,Kah Paul1,Martikainen Jukka1,Suoranta Raimo1

Affiliation:

1. Department of Mechanical Engineering, Welding Laboratory, Lappeenranta University of Technology, Lappeenranta, Finland

Abstract

The manufacturing industry has for many years shown interest in opportunities offered by the welding of dissimilar metals, for example, in transportation to reduce vehicles weight and in power plants, to fit heterogeneous working conditions. Early gas metal arc welding (GMAW) processes had limited control of heat input, but advanced GMAW processes of the last decades offer new perspectives for welding dissimilar metals. The study review briefly dissimilar metal welding (DMW) and investigates advanced GMAW processes with emphasis on their general operating principles and arc control. Experiments performed on dissimilar metals using GMAW processes are then reviewed, highlighting those made using advanced gas metal arc welding processes. The study collates data from scientific literature on fusion dissimilar metal welding, advanced gas metal arc welding processes and experiments conducted with conventional GMAW. The study shows that the welding procedure specification is an important factor in dissimilar metal welding. Advanced GMAW processes have significant potential in fusion welding of dissimilar metals in the case of ferrous metals, ferrous and non-ferrous metal combinations and non-ferrous metals of different grades. Accurate control of heat input allows more effective prediction of intermetallics and better control of post heat treatments. Increased understanding of advanced processes will permit development of more suitable specifications of gas metal arc welding procedures for dissimilar metal welding. Process flexibility and adaptability to robotic mass production will allow for wider application of this process and the avoidance of costly alternative methods.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3