Multi-disciplinary design optimisation of mechanical parts with freeform surfaces: Case study encompassing manufacturing criteria

Author:

Vosniakos George-Christopher1,Benardos Panorios1,Lipari Virginia1

Affiliation:

1. Manufacturing Technology Division, School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Abstract

Designing parts with freeform surfaces, as typically applied in dies and moulds, is currently dealt with through designer experience, if design intent is to be maintained and if, at the same time, the manufacturing process is to be facilitated. This work puts forward a solution to these issues which is based on computational intelligence. A library of freeform surface morphological features is defined using parametric wireframe models that include constraints. The part is constructed using wireframe features from this library and these are subsequently converted to solid models. The effect of changes of feature parameter values is linked to part functional characteristics in standard design environment. Regarding the effect on manufacturing process characteristics, various models may be employed. As an example, a fuzzy system that decides tool diameter and the necessity of a semi-finishing operation is employed in this work. Artificial neural networks are trained with a number of workpiece variations corresponding to different feature parameter values and the pertinent outputs from functional and manufacturing assessment. Next, a standard genetic algorithm is set up to find the best values of the feature parameters based on both functionality and manufacturing criteria with suitable weighing. The evaluation function of the genetic algorithm employs the artificial neural networks constructed as metamodels. The methodology is demonstrated through an illustrative case study, but may encompass further Design-for-X disciplines.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Association of design and computational fluid dynamics simulation intent in flow control product optimization;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2017-03-14

2. Multidisciplinary design optimization to identify additive manufacturing resources in customized product development;Journal of Computational Design and Engineering;2016-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3