The pillowing tendency of materials in single-point incremental forming: Experimental and finite element analyses

Author:

Al-Ghamdi KA1,Hussain G2

Affiliation:

1. Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Mechanical Engineering, Eastern Mediterranean University, North Cyprus, Turkey

Abstract

The pillow is a defect that adversely affects the geometrical accuracy as well as the formability in single-point incremental forming. With a main objective to control this defect, the effects of mechanical properties of material on pillowing are examined in this work. To identify the mechanical property that significantly affects pillowing, single-point incremental forming tests are conducted using a variety of materials (i.e. 11). It is found that a property (i.e. area reduction at tensile fracture) that controls the formability of a material in single-point incremental forming does not have any significant effect on its pillowing tendency. Interestingly, hardening exponent (i.e. a property that has controlling influence on the stretch-ability of material) appears to be the most influential property that determines the pillowing tendency of sheet metals in single-point incremental forming. Furthermore, the pillowing tendency of a material decreases with the decrease in this particular property. This, according to finite element analysis, occurs because strain localization around the tool/sheet contact correspondingly increases. To select and rank materials with respect to the pillowing behavior, a formula describing the property–pillowing relationship is proposed. As a secondary objective, the correlation between pillowing and forming depth is also investigated in this work. It is shown that initially the pillow progresses as the forming depth increases. However, after forming has been carried out to a certain depth, the pillow begins to regress, most likely due to strain hardening of sheet metal. In conclusion, it is suggested to lower the hardening exponent of sheet metals in order to control pillowing in single-point incremental forming.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Martensitic transformation of SS304 truncated square pyramid manufactured by single point incremental forming;CIRP Journal of Manufacturing Science and Technology;2024-12

2. Advances on Incremental forming of composite materials;Alexandria Engineering Journal;2023-09

3. Stiffness-based Offline Toolpath Error Compensation for Robotized Incremental Forming;2023 7th International Conference on Automation, Control and Robots (ICACR);2023-08-04

4. Investigation of forming parameters influence on pillow defect in a new vacuum-assisted incremental sheet forming process;The International Journal of Advanced Manufacturing Technology;2023-07-15

5. Simulation Study for Robot-based Single Point Incremental Forming;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3