Optimum design of middle stage tool geometry and addendum surfaces in sheet metal stamping processes using a new isogeometric-based framework

Author:

Shamloofard Mansoor1,Isazadeh Amir Reza1,Shirin Mehdi Bostan2,Assempour Ahmad1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

2. Amirkabir university of technology Biomedical engineering faculty

Abstract

An efficient isogeometric-based framework is presented to integrate optimum design and formability analysis of sheet metal forming processes. To assess the quality of the formed parts, several objective functions such as fracture, wrinkling, thickness variation, and stretching are studied. In this framework, geometric parameters of addendum surfaces and middle tools are considered as design variables, the objective functions are calculated using the recently developed one-step and multi-step inverse isogeometric methods, and the optimum design variables are obtained using the genetic global optimization algorithm. The major advantage of employing the inverse methods is to analyze the formability of the parts with a low computation time. In this research, the effects of altering addendum surfaces and/or middle tools on the quality of the formed parts are simultaneously observed since modeling, formability analysis, and optimization stages of sheet metal forming simulation are integrated using the NURBS functions. To evaluate the performance of the inverse isogeometric models in calculation of the studied objective functions, the results obtained by these models are compared to those of experiment and forward FEM. Comparisons of the results indicate that these models predict the objective functions with acceptable accuracy at a low computation time. For instance, in sheet metal forming analysis of a rectangular box with three different addendum surfaces, the maximum error in prediction of minimum thickness using the one-step inverse model is approximately 4.65% more than forward FEM, while the solution time of forward FEM is around 40 times greater. Finally, the presented optimization procedure is applied to design addendum surfaces in forming of a rectangular box and the middle tools in a two-stage drawing of a square box. The results of these problems confirm the credibility of the present approach in rapid optimum design of addendum surfaces and intermediate tools with acceptable accuracy.

Funder

iran national science foundation

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of forming force and Erichsen index using Taguchi design of experiments: Mathematical models and experimental validation;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3