Comparison between laser beam and gas tungsten arc tailored welded blanks via deep drawing

Author:

Aminzadeh Ahmad1,Parvizi Ali1ORCID,Safdarian Rasoul2ORCID,Rahmatabadi Davood1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Tehran, Tehran, Iran

2. Department of Mechanical Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Khoozestan, Iran

Abstract

This paper aims at analyzing the deformation behavior of tailor welded blanks (TWBs), manufactured by laser beam welding (LBW) and gas tungsten arc welding (GTAW), through the deep drawing process. Dissimilar and similar steels with different thicknesses were used in the production of tailor welded blanks. The Nd: YAG laser welding method with nitrogen (N2) as the shielding gas was used to join TWBs. The effects of some significant process factors, namely welding speed, blank holder forces (BHF), material properties of base metals, dry/lubricated condition and laser spot size was experimentally investigated on the weld line movement and drawing depth. Results indicated that using LBW with optimum parameters for the production of dissimilar TWBs caused the control of failure in the weaker base metal. Results showed that the sound welds were produced in similar TWBs with a thickness ratio of 2 when using GTAW, but the weld quality was poor when using LBW. Moreover, it is observed that the critical stresses were taken place outside of the weld zone and rupture due to the high heat input of laser and metallurgical changes of the base metal that occur in the pre-softening zone. In addition, the weld line movement occurred as a result of plastic strain change of the weld joint that caused failure-prone zone creation as well as the adverse wrinkling.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3