Pipeline reliability assessment and predictive maintenance considering multi-crack dependent degradation

Author:

Zheng Yujia12ORCID,Dong Zengshou1,Zhang Xiaohong3,Shi Hui1

Affiliation:

1. School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, China

2. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China

3. School of Economics and Management, Taiyuan University of Science and Technology, Taiyuan, China

Abstract

Cracks due to corrosion are one of the main reasons for natural-gas pipeline leaks. Making the reliability assessment, prediction, and maintenance decision of pipelines based on measurable crack data is a central issue at present. The failure of pipelines is usually a result of the cumulative impact of multiple cracks. The interaction between adjacent cracks accelerates crack propagation, and greatly affects the degradation mechanism of pipelines. In this study, the reliability prediction and maintenance decisions were studied by considering the dependent degradation between multiple cracks in pipelines. Firstly, the initiation and propagation of pipeline cracks were modeled using a non-homogeneous Poisson process and a Gamma process, respectively. The interaction between cracks was defined to be a function of the random crack distance, which could be reflected by the change of shape parameters in the Gamma process. Secondly, the pipeline’s failure was defined as the competitive failure of the number of cracks, the maximum crack depth, and the total crack depth. The reliability prediction model of a pipeline under this failure mode was determined. A non-periodic combined maintenance policy considering both the pipeline condition and its predictive reliability was then proposed, and an optimal predictive maintenance decision model was constructed to minimize the long-term average cost rate. Finally, the effectiveness of the proposed model and policy was verified by a numerical experiment and a crack dataset of a transnational pipeline.

Funder

Innovation Project of Graduate Students in Shanxi Province

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Natural Science Foundation of Shanxi Province

Shanxi Scholarship Council of China

Key Research and Development projects in Shanxi Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3