Research on blade statistics measurement registration planning technology

Author:

Zhang Yun1ORCID,Xu Zhiyong1ORCID,Liu Jingqing1,Chen Zhitong2,Zhu Zhengqing2ORCID

Affiliation:

1. School of Mechanical and Materials Engineering, North China University of Technology, Beijing, China

2. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Abstract

Blade has the characteristics of high machining quality of complex curved surface. If there is no benchmark before machining, it is impossible to judge whether the blades before machining are qualified. Therefore, it is necessary to analyze the blade measurement data. Due to the large measurement point error and disordered distribution, it is necessary to optimize the blade registration. Therefore, blade model registration and positioning is particularly important in blade shape detection and analysis. First, preregistration is carried out based on the six point optimization selection of the blade. After preregistration, the selection method of registration control point set based on theoretical model and statistical error is proposed, planning the registration datum point set on the blade model. The registration control point set is obtained through the registration operation between the measurement data and the registration reference point set. Finally, based on the stability and reliability of important sampling sensitivity and statistical error, obtain the probability density function of error normal distribution statistics samples and important samples. The selection of statistical control points and the rationality of the objective function were verified. The stability/reliability of the statistical alignment point selection is proved to be feasible. The statistical registration deviation is [0.015,0.026] mm, and the ICP registration deviation is [0.031,0.035] mm. The average deviation of statistics registration is about 0.013 mm smaller than the average deviation of ICP registration. The deviation of statistical sampling points is about 0.0214 mm, and that of traditional sampling points is about 0.0275 mm. The deviation of statistical sampling points is about 0.0061 mm smaller than that of traditional sampling points. It meets the requirements of rapid, high efficiency and high precision measurement for aeroengine blades.

Funder

National Defense Basic Scientific Research program of China

Aeronautical Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3