Affiliation:
1. School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK
Abstract
Digital manufacturing techniques can simulate complex assembly sequences using computer-aided design–based, ‘as-designed’ part forms, and their utility has been proven across several manufacturing sectors including the ship building, automotive and aerospace industries. However, the reality of working with actual parts and composite components, in particular, is that geometric variability arising from part forming or processing conditions can cause problems during assembly as the ‘as-manufactured’ form differs from the geometry used for any simulated build validation. In this work, a simulation strategy is presented for the study of the process-induced deformation behaviour of a 90°, V-shaped angle. Test samples were thermoformed using pre-consolidated carbon fibre–reinforced polyphenylene sulphide, and the processing conditions were re-created in a virtual environment using the finite element method to determine finished component angles. A procedure was then developed for transferring predicted part forms from the finite element outputs to a digital manufacturing platform for the purpose of virtual assembly validation using more realistic part geometry. Ultimately, the outcomes from this work can be used to inform process condition choices, material configuration and tool design, so that the dimensional gap between ‘as-designed’ and ‘as-manufactured’ part forms can be reduced in the virtual environment.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献