High efficiency blasting erosion arc machining of 50 vol.% SiC/Al matrix composites

Author:

Chen Jipeng1,Gu Lin1,Zhu Yingmou1,Zhao Wansheng1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, China

Abstract

Blasting erosion arc machining (BEAM) is adopted to improve the machining efficiency of high fraction (50 vol.%) SiC/Al matrix composites. Results of the fractional factorial experiments and full factorial experiments indicate that the electrical parameters (peak current, pulse duration and pulse interval) are the main impact factors of the machining efficiency, and when the peak current is 500 A, the pulse duration is 8 ms and the pulse interval is 2 ms, the material removal rate reaches to 6000 [Formula: see text]/min. Furthermore, the material removal rate was optimized and could be as high as 7500 [Formula: see text]/min with the tool wear ratio about 10%. Simulation of the single discharge heat transfer illustrates that the SiC particles have negative influence on the machining performance due to their temperature dependent characteristics. The polarity effect was also studied and it is disclosed that different machining polarities have different influences on the machining performance, surface integrity and even the formation of SiC particles. Finally, a 50 vol.% SiC/Al workpiece was machined with blasting erosion arc machining.

Funder

the grant of USCAST

the innovative group grant of NSFC

the State Key Laboratory of mechanical and vibration Focus Fund, Shanghai Jiao Tong University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3