Electrochemical micromachining of large-area micro-dimple arrays with high machining accuracy

Author:

Hou Zhibao1,Qu Ningsong12,Chen Xiaolei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing, China

Abstract

Surface textures, especially micro-dimple arrays, can significantly improve the friction performance of engineering parts. Through-mask electrochemical micromachining is an effective method for generating micro-dimple arrays. In this article, a new method is introduced to fabricate a large-area polydimethylsiloxane mask containing micro through-holes. Using this technique, a stainless steel mould with micro-pillar arrays is generated by wire electrical discharge machining. A combination of pressure and weight of electrolyte is then proposed to keep the polydimethylsiloxane mask closely attached to the workpiece, which helps to achieve high machining accuracy. The effects of applied voltage, effective machining time and pulse duty cycle on the micro-dimples are investigated. The profiles of the micro-dimples are not sensitive to applied voltage, but pulse duty cycle is a significant factor influencing the depth of the micro-dimples. Micro-dimples of width 95 µm, depth 19 µm and a machining area of diameter 40 mm are successfully generated using a polydimethylsiloxane mask, and the standard deviations of the micro-dimple width and depth are only 0.84 and 0.23 µm, respectively. The present experiments verify that it is feasible to obtain large-area micro-dimple arrays with high machining accuracy using this technique.

Funder

Fundamental Research Funds for the Central Universities

National Basic Research Program of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3