Corrosion behaviors and electrochemical mechanisms of laser-cladded NiCrAlMo/nano-CeO2 composite coatings in chloride-enriched environments

Author:

Haixiang Chen1,Wang Kun1ORCID

Affiliation:

1. College of Mechanical Engineering, Tongji University, Shanghai, P.R. China

Abstract

Q235 steel is a low-cost material widely applied in modern industrial constructions. However, electrochemical degradation is the main drawback for its applications in chloride-enriched environments. To address this problem, NiCrAlMo and NiCrAlMo + 2 wt% nano-CeO2 composite coatings were laser-cladded on Q235 steel substrates. Characterization methods were used to investigate the microstructures, corrosion behaviors, and electrochemical mechanisms of the obtained coatings. The results showed that adding nano-CeO2 is conductive for removing residual gas pores and for refinement of grains, effectively improving the passive and electrochemical properties of the NiCrAlMo coating in both chloride-enriched solutions. Furthermore, the NiCrAlMoCeO2 composite coating exhibits a significantly reduced icorr of 0.4919 µA cm2 and an increased resistance ( Rp) of 175,310 Ω cm2 in a neutral solution, demonstrating the good anti-corrosion properties for its application in marine engineering structures.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3