Artificial neural network–based and response surface methodology–based predictive models for material removal rate and surface roughness during electro-discharge diamond grinding of Inconel 718

Author:

Unune Deepak Rajendra1,Mali Harlal Singh1

Affiliation:

1. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, India

Abstract

Hybrid machining processes growing popularity in the processing of difficult-to-cut materials due to their distinct merits over individual machining processes attributed by an amalgamation of two or more machining mechanisms simultaneously. This research study deals with the response surface methodology and artificial neural network with backpropagation algorithm–based mathematical modeling of electro-discharge diamond grinding of Inconel 718 superalloy. The matrix experiments were designed based on central composite design. The wheel speed, current, pulse-on-time, and duty factor were chosen as control factors, while material removal rate and average surface roughness ( Ra) were chosen as performance parameters. The analysis of variance test shows that the wheel speed is the major factor influencing both the material removal rate and the Ra and contributes 89.03% and 79.10% on material removal rate and Ra, respectively, followed by current which contributes 4.43% and 8.38% on material removal rate and Ra, respectively. The modeling and predictive abilities of developed artificial neural network model (4-24-2) were related to the response surface methodology model using root mean square error and absolute standard deviation. The predicted values of material removal rate and Ra by response surface methodology and artificial neural network are in close agreement with the actual experimental results.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3