Evaluation of lubricants for electrically-assisted forming

Author:

Bunget C1,Salandro W A1,Mears L1

Affiliation:

1. Clemson University, International Center for Automotive Research, Greenville, SC, USA

Abstract

The automobile and aerospace sectors are increasingly turning their attention to the opportunities created by the use of lightweight alloys with large strength-to-weight ratios, such as aluminium, magnesium, stainless steel, and titanium alloys. However, when using conventional forming processes, these light materials create processing challenges: low formability and high yield strength. Electrically assisted forming (EAF) is a method that can overcome these limitations. Specifically, EAF is a novel forming process where electricity is applied to the metallic workpiece during deformation. Previous investigations have shown that EAF creates a reduction in flow stress, an increase in formability, an ability to reduce/eliminate springback, and an improved precision. This study investigates the influence of electricity on lubricant performance and identifies lubricant candidates for EAF. When electricity is applied, besides the changes due to surface expansion at the interface that occur in conventional processes, the lubricant is exposed to high localized temperatures and current fields. Electrically assisted ring compression tests are conducted and the performance characteristics of three lubricants are evaluated. By combining the experiments and finite element simulation results, friction coefficients can be estimated, and the effect of electric current flow on friction characteristics quantified.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3