A novel pellet-based 3D printing of high stretchable elastomer

Author:

Zhang Jianxun1,Luo Shengyang2ORCID

Affiliation:

1. City College, Kunming University of Science and Technology, Kunming, China

2. Modern Intelligent Manufacturing Industry College, West Yunnan University of Applied Sciences, Dali, China

Abstract

Elastomers, known for their high stretchability and flexibility, are widely used in high-tech applications. However, traditional manufacturing methods for elastomeric part production have limitations. 3D printing, particularly fused deposition modeling (FDM), offers a promising alternative by allowing the fabrication of customized elastomers with desired shapes and properties. Conventional filament-based FDM techniques struggle to print elastomers. This article presents a novel approach for 3D printing polyolefin elastomer (POE) using a direct pellet printing technique. A customized pellet printer with a pneumatic pressure feeding system was used that eliminates filament buckling issues commonly associated with conventional filament-based 3D printing methods. The mechanical properties and microstructure of the printed parts were analyzed to evaluate the suitability of the technique for producing high-quality elastomeric components. SEM images indicated a high-quality and accurate printing method; however, there are micro-holes between the raster due to the high shrinkage rate of POE and increasing the nozzle temperature improves the print quality. The mechanical properties of the printed samples exhibited remarkable formability, with elongation reaching up to 1965%. It is also found that as the nozzle temperature increased, the strength, elongation, and bonding between layers improved significantly. This innovative 3D printing technique has the potential for various applications such as soft robotics and wearable electronics.

Funder

Support for the Xingdian Talent Support Program project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3