Machining chatter in continuous facing under a constant nominal cutting speed: Tool vibration with time-varying delay

Author:

Kountanya Raja1,Kim Seung-Bum1,Mantese Joseph1

Affiliation:

1. Physical Sciences Department, United Technologies Research Center, East Hartford, CT, USA

Abstract

This article studies regenerative chatter in single-point face-machining at nominally constant speed under continuous conditions. A temporal model for rotational speed was developed and experimentally verified. The resulting rotational time-delay was cast into the classical force feedback mechanism for chatter. A chatter model was formulated to allow slight spindle speed variation about the temporal model. The modified method of steps was then employed to solve the tool vibration in time-domain allowing one (single-degree-of-freedom) or two (2-degree-of-freedom model) vibrational modes. Exploratory facing experiments using a grooving tool were conducted on a nickel alloy workpiece. It was found that the tool was more susceptible to chatter at larger diameters. It appeared that the single-degree-of-freedom model captured the most relevant of the observed phenomena while cutting without spindle speed variation, however, neither the 1-degree-of-freedom nor the 2-degree-of-freedom models could effectively capture the experimentally observed chatter evolution characteristics while cutting with spindle speed variation.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3