Modeling and multi-response optimization of milling characteristics based on Taguchi and gray relational analysis

Author:

Sarıkaya Murat1,Yılmaz Volkan2,Dilipak Hakan2

Affiliation:

1. Department of Mechanical Engineering, Sinop University, Sinop, Turkey

2. Manufacturing Department, Technology Faculty, Gazi University, Ankara, Turkey

Abstract

This article focuses on experimental investigation and effective approach to optimize the milling characteristics with mono and multiple response outputs such as vibration signals, cutting force, and surface roughness. To achieve this goal, experiments were designed based on Taguchi’s L18 (21 × 33) orthogonal array. During the milling of AISI 1050 steel, process performance indicators such as vibration signals (RMS), cutting force (Fx), and surface roughness (Ra) were measured. The effect of process parameters such as depth of cut, feed rate, cutting speed, and number of insert on RMS, Fx, and Ra were investigated and parameters were simultaneously optimized by taking into consideration the multi-response outputs using Taguchi-based gray relational analysis. Taguchi’s signal-to-noise ratio was employed to obtain the best combination with smaller-the-better and larger-the-better approaches for mono- and multi-optimization, respectively. Analysis of variance was conducted to determine the importance of process parameters on responses. Mathematical models were created, namely, RMSpre, Rapre, and Fxpre, using regression analysis. According to the multi-response optimization results, which were obtained from the largest signal-to-noise ratio of the gray relational grade, it was found out that the optimum combination was depth of cut of 1 mm, feed rate of 0.05 mm/rev, cutting speed of 308 m/min, and number of insert of 1 to minimize simultaneously RMS, Fx, and Ra. It was obtained that the percentage improvement in gray relational grade with the multiple responses is 42.9%. It is clearly shown that the performance indicators are significantly improved using this approach in milling of AISI 1050 steel. Moreover, analysis of variance for gray relational grade proved that the feed rate is the most influential factor as the minimization of all responses is concurrently considered.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3