Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy

Author:

Kumar Mohan1ORCID,Bajpai Vivek1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India

Abstract

Miniaturization with superior quality product of super alloy is the demand of the industry. Ti6Al4V is the demanding super alloy due to its excellent material properties, although this super alloy is known for poor machinability in terms of burr formation, low tool life, and poor surface finish. Therefore, being a popular super alloy, it comes under the difficult-to-cut material. In the current work, burr formation on the machining of Ti6Al4V has been studied. Experimental investigation and characterizations of top burr formation on Ti6Al4V alloy using end milling process were carried out. A scanning electron microscopy identifies the burr formed on the machined surface. A new technique has been introduced to measure the top burr width (i.e. equivalent width) accurately. Equivalent burr width calculated as the ratio of total area of burr generated to the total height. It was observed that equivalent burr width in up milling was increased by 120%, while in down milling, it was decreased by 50% as the speed varies from conventional to high speed. Furthermore, the effects of different cutting parameters and tool parameters on top burr formation have been analyzed to establish correlation among them.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3