Corrosion behavior of SiC and FeCrC reinforced AISI 304 components fabricated by plasma wire arc additive manufacturing (P-WAAM)

Author:

Bayar İsmail1ORCID,Öteyaka Mustafa Özgür2ORCID,Çakir Ersin3,Ulutan Mustafa3

Affiliation:

1. Department of Mechanical Engineering, Batman University, Batman, Turkey

2. Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskişehir Osmangazi University, Eskisehir/Turkey

3. Department of Mechanical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey

Abstract

Wire arc additive manufacturing (WAAM) has recently been widely used to produce different materials. The present study fabricated AISI 304 stainless steel parts using the Plasma-WAAM (P-WAAM) method. FeCrC and SiC microparticles were added to enhance the corrosion properties of additive-manufactured (AM) AISI 304. The corrosion behaviors of the samples were studied in the 3.5 wt.% NaCl solution using electrochemical techniques. The results show that additively manufactured AISI 304 sample microstructure consisted of austenitic and δ-ferrite phases in the form of lathy and skeletal. The electrochemical results showed that the 304-WAAM sample open circuit potential (Eocp) was −180 mV and slightly more cathodic than the 304-NT sample. The Eocp decreased by 69 and 145 mV in the 304-FeCr and 304-SiC samples, respectively, compared to the 304-WAAM sample. The polarization resistance of the WAAM sample was triple compared to the reinforced with microparticles WAAM sample due to lower galvanic activity. In addition, the corrosion resistance was investigated by impedance technique, and it was found that the WAAM 304 without reinforcement had a better protective film with a larger semi-circle capacitive loop.

Funder

Eskişehir Osmangazi Üniversitesi

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3