FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024

Author:

Zhang Lei1,Feng Xiao1,Li Zhaoguang2,Liu Changyong1

Affiliation:

1. Key laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, China

2. Department of Process and Technology, Beijing Institute of Control Engineering, Beijing, China

Abstract

Finite element models were established to simulate the quenching processes of aluminum alloy 2024 blocks under different quenching conditions. The surface cooling curves of aluminum blocks in different quench media were obtained by experiment. Inverse heat-transfer calculations were applied to determine the heat-transfer coefficient curves. Finite element model was used to predict residual stresses developed after quenching process by quenching aluminum blocks with different thicknesses (20 mm ≤ d ≤70 mm) into two kinds of quenchants (water and polyalkylene glycol solution). The influence of block thickness and quenchant on residual stresses was investigated by both finite element method simulation and experiments. To validate the simulation results, the X-ray diffraction method was used to measure the residual stresses developed in aluminum alloy 2024 blocks after quenching process. The agreement between model and experiment was good. It was concluded that both block thickness and quench media had critical influences on residual stresses. When the thickness of the aluminum block increased from 20 to 50 mm, the residual stress value at the center of the block increased by 100% and the increase of the residual stress became insignificant after 50 mm. In d = 20 and 30 mm cases, polyalkylene glycol quench conditions were proved to cause lower levels of residual stress than water quench conditions.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3