A reliable process planning approach based on fuzzy comprehensive evaluation method incorporating historical machining data

Author:

Mou Wenping12,Gao Xin2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. NC Machining Workshop, Chengdu Aircraft Industrial (Group) Co. Ltd, Chengdu, China

Abstract

The quality of process planning could directly affect product quality, machining efficiency and cost. In small batch production such as machining aircraft structural parts, human experience is dominant in the process planning of those parts with great variability. Inferior planning of the machining process directly leads to low efficiency and quality, which has serious impact on the lead time of aircraft structural parts. To address these problems, different from the existing process knowledge reuse method by estimating the geometric similarity, a more reliable process planning method based on fuzzy comprehensive evaluation via historical machining data is proposed in this article. As long as machining resources are determined, a feature-based historical machining data model can be built, and the similarities between new machining features and the features in the database are estimated accordingly. Machining strategy, which contains tool path strategy and machining parameters, can then be identified according to the evaluation results of the similar features based on entropy weight method. A prototype system is developed and successfully applied to the typical aircraft structural parts.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review and Prospects of Manufacturing Process Knowledge Acquisition, Representation, and Application;Machines;2024-06-18

2. Automated retrieval and comparison of sheet metal parts;International Journal of Computer Integrated Manufacturing;2023-01-16

3. The key technologies of machining process design: a review;The International Journal of Advanced Manufacturing Technology;2022-03-12

4. Risk Assessment of Veterinary Drug Residues in Meat Products;Current Drug Metabolism;2020-12-15

5. A study on a general cyber machine tools monitoring system in smart factories;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3