Surface roughness study of polyamide in nano-metric polishing using low-frequency acoustic energy

Author:

Beigmoradi Sajjad1,Vahdati Mehrdad1ORCID

Affiliation:

1. Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Polymers have gained the attention of manufacturers due to their significant advantages such as low density, high corrosion resistance, and high humidity resistance. Producing high-precision polymeric components is one the most challenging issues especially in fabricating complex or micro-scale systems. Some of the machining techniques such as electro discharge machining (EDM) and electrochemical machining (ECM) cannot be employed for machining the non-conductive parts. Using abrasive particles is one of the best options for machining these types of materials. In this work, the capability of the acoustic energy for machining polyamide (PA) workpieces is studied. To this end, an experimental setup is installed and design of experiment (DoE) algorithm is employed to survey the effect of process parameters on surface roughness. Three parameters at three levels are considered as the effective factors of the process and the sensitivity of the surface roughness on the process factors is investigated. In the next step, a hybrid finite element/boundary element approach was used to discuss the relation of process parameters to the vibrational characteristics of the container, then the mechanism of the process was investigated employing the discrete element method. Finally, the surface topology of the optimal workpiece before and after the process was presented and compared. It was observed that acoustic energy can be considered as a vibration source of the container’s floor to provide kinetic energy for machining PA parts on the nano-metric scale. Moreover, it was found that the initial roughness of the workpiece and the chosen parameters play a crucial role in the machining process. Experimental results show that in this technique by selecting appropriate process factors the surface roughness can be reduced up to 50%.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3