Optimization of roller burnishing process using Kriging model to improve surface properties

Author:

Nguyen Trung-Thanh12ORCID,Le Xuan-Ba2

Affiliation:

1. Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

2. Le Quy Don Technical University, Hanoi, Vietnam

Abstract

The objective of this work is to investigate the influences of three machining factors (burnishing speed V, feed rate f, and depth of penetration a) on the improved rate of arithmetic average roughness Δ Ra, improved rate of maximum height roughness Δ Ry, and improved rates of surface hardness Δ SH. The internal roller burnishing experiments were conducted with the aid of the computer numerical control machining center and Box–Behnken experimental design. The Kriging models were used to render the highly nonlinear relationships between inputs and outputs. An integrative approach combining a Non-dominated Sorting Genetic Algorithm II and Technique for Order Preference by Similarity to Ideal Solution was adopted to generate a set of feasible optimal solutions and determine the best machining conditions. The scanning electron microscopy images were depicted to investigate the surface morphology at the different conditions. The X-ray diffraction was applied to measure the compressive stresses at the external surface. The results showed that the predicted values of the objectives have good agreement with the experimental ones. High surface quality is characterized by an improved average roughness of 95.80%, an enhancement in the maximum roughness of 91.98%, and an improvement in surface hardness of 45.44%, compared to pre-machined surfaces. The selection of optimum process parameters could help the burnishing operators to save the machining costs and time. The combination of Kriging model, Non-dominated Sorting Genetic Algorithm II, and Technique for Order Preference by Similarity to Ideal Solution is considered as an intelligent approach for modeling and optimization of burnishing processes.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3