A new discrete double-population firefly algorithm for assembly sequence planning

Author:

Zhang Zaifang1,Yuan Baoxun2,Zhang Zhinan3

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P.R. China

2. Siemens (China) Co., Ltd., Shanghai, P.R. China

3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China

Abstract

Assembly sequence planning is a critical step of assembly planning in product digital manufacturing. It is a combinational optimization problem with strong constraints. Many studies devoted to propose intelligent algorithms for efficiently finding a good assembly sequence to reduce the manufacturing time and cost. Considering the unfavorable effects of penalty function in the traditional algorithms, a new discrete firefly algorithm is proposed based on a double-population search mechanism for the assembly sequence planning problem. The mechanism can guarantee the population diversity and enhance the local and global search capabilities by using the parallel evolution of feasible and infeasible solutions. All parts composed of the assembly are assigned as the firefly positions, and the corresponding movement direction and distance of each firefly are defined using vector operations. Three common objectives, including assembly stability, assembly polymerization and change number of assembly direction, are taken into account in the fitness function. The proposed approach is successfully applied in a real-world assembly sequence planning case. The sizes of feasible and infeasible populations are adequately discussed and compared, of which the optimal size combination is used for initializing the firefly algorithm. The application results validate the feasibility and effectiveness of the discrete double-population firefly algorithm for solving assembly sequence planning problem.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal assembly sequence planning with tool uncertainties;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-07-29

2. Optimal robotic assembly sequence planning with tool integrated assembly interference matrix;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2023

3. Assembly Sequence Planning Based on Hierarchical Model;Wireless Communications and Mobile Computing;2022-02-09

4. Firefly Algorithm;Nature‐Inspired Algorithms Applications;2021-11-19

5. The AAPF fault-tolerant method for small and complex product assembly;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2021-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3