Vector field path-following control for a small unmanned ground vehicle with Kalman filter estimation

Author:

Sun Yun-Ping1ORCID,Liang Yen-Chu2

Affiliation:

1. Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung

2. Department of Aeronautics and Astronautics, R.O.C. Air Force Academy, Kaohsiung

Abstract

Industry 4.0 accelerates the growth of unmanned technology that reduces the labor cost and creates high automation in manufacturing system. The automated guided vehicle which is capable of transferring materials or executing tasks without human intervention becomes a necessary system for modern unmanned factories. The study explores the guidance and control design to accomplish the common task of path-following control for unmanned ground vehicles (UGV). A complete design method is presented that includes the lateral-directional autopilot, the vector field guidance for path-following, and multi-sensor fusion. The lateral-directional autopilot produces the low-level control action, the higher level guidance indicates the course direction of UGV at every spatial point based on the lateral path error, and the accurate UGV position relies on the estimate obtained by dynamically fusing sensors with extended Kalman filter. The design parameters in every stage are analyzed theoretically first and then fine-tuned in practice. The process is clearly described in this study, and the field test results are discussed in details to verify the performance of the proposed method and demonstrate the superiority over others.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exhaustive investigation into power performance of an unmanned robotized vehicle for industrial transportations;Measurement;2023-10

2. Mobile robotics in smart farming: current trends and applications;Frontiers in Artificial Intelligence;2023-08-31

3. Automated guided vehicles position control: a systematic literature review;Journal of Intelligent Manufacturing;2022-01-05

4. Using extended Kalman filter for failure detection and prognostic of degradation process in feedback control system;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2021-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3