Affiliation:
1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2. Sustainable Manufacturing Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract
Unstable crude oil derivatives are among the main substances added to the mineral-based lubricants (MBL). However, the high purification and disposal costs of such lubricants and consequent environmental difficulties are the major drawbacks of cutting fluid consumption. The lower use of MBL or replacing them with less harmful ones, in principle, vegetable-based lubricants (VBL) are the prime importance of achieving less operating costs and pollution. Furthermore, the use of VBLs is much more recommended if machinability aspects, including tool life, surface, and edge quality, would also be improved. Therefore, in the present study, cutting parameters and lubricant types were used as the experimental variables in the MQL-turning of A286 superalloy. A286 is classified as a difficult-to-cut material with a wide range of applications in the energy and turbine industries. No experimental study was found on the machining of A286 under separate cooling and lubrication with two MQL systems simultaneously. The effects of cutting parameters on both average surface roughness Ra and tool wear morphology were evaluated. Experimental results denoted that the use of VBLs led to better surface topology. On the other hand, the tendency of the built-up layer (BUL) and built-up edge (BUE) phenomenon were intensified when MBL was used. On the word, better tool life is also expected when using VBL. This observation revealed that the use of VBL not only tends to improve productivity and environmental safety aspects but also machinability aspects; in principle, better surface topology and longer tool life are also expected.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献