Study on the cavity closure behavior of steel ingots during open die forging

Author:

Kwon Yongchul1,Kim Sangsik2,Kang Jonghun3ORCID

Affiliation:

1. Korea Conformity Laboratories, Busan, South Korea

2. Gyeongsang National University, Jinju, South Korea

3. Jungwon University, Geosan-Gun, South Korea

Abstract

The manufacturing of sound forgings from large steel ingots requires that internal cavity defects generated during the steel ingot solidification process be compressed by open die forging. The forging ratio that is generally recommended to remove internal defects in large forged products is 3S (threefold); however, the practice lacks a theoretical basis. In this study, a forging experiment and a finite element analysis were performed to investigate the correlation between the forging ratio for large steel ingots (3S) and the cavity closure behavior. First, a hot compression experiment was performed by varying the temperature and strain rate, and the flow stress data observed in the experiment was applied to the finite element analysis. In the experiment for the cogging process, the forging ratio was applied to an actual non-compressive defect material. The finite element analysis was performed using the same forging path as the forging experiment. In the cogging experiment, cavity closure was found by ultrasonic inspection at the forging ratio of 2.9S. The finite element analysis showed that the size of the cavity was significantly decreased at the forging ratio of 2.9S. A finite element analysis was also performed to investigate effective strain and hydrostatic stress at the forging ratio of 2.9S. Finally, this article provides the theoretical basis for the limitation of the internal defect size in initial materials, the threshold effective strain, and the limiting forging ratio of forged products to ensure the internal soundness of large forged products.

Funder

korea institute of energy technology evaluation and planning

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review of Factors Affecting the Process Parameters and Various Measurement Techniques in Forging Processes;steel research international;2023-02-05

2. Effect of process parameters on porosity defects in Al-Si alloy hot rolling;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3