Experimental and numerical investigation of forming limit diagram of Al/Cu two-layer sheet in high strain rate forming process

Author:

Shabanpour Milad1ORCID,Arezoodar Alireza Fallahi1ORCID

Affiliation:

1. Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

The formability of a two-layer sheet in the electromagnetic forming (EMF) process is investigated through experimental and numerical methods. The Al/Cu two-layer sheet is fabricated by using an explosive joint in the EMF process. By using the diameter changes in surface grids of specimens with various widths the forming limit diagrams used in necking and fracture conditions are calculated. The acceleration of the major strain method is used to predict the necking time in the simulation. The J-C damage constants were calibrated by using the surface response method with a 95% model fit. The Al/Cu two-layer sheet has a higher formability in the EMF process than in a static condition. The Al/Cu two-layer sheet’s formability increases when the Cu is in the outer layer. The Cu layer has a higher formability than the Al layer and has a protective role against necking. The fracture forming limit diagram is linear and has a negative slope. The fracture strain in the in-plane strain condition in the AC lay-up is 36% greater than the CA lay-up, due to Cu’s better resistance to fracture in tensile stress.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3