Affiliation:
1. Center for Laser Aided Manufacturing, Lyle School of Engineering, Southern Methodist University, Dallas, TX, USA
Abstract
Laser cladding by cold-wire feeding is known as an efficient cladding method due to its advantages, such as near 100% material utilization, high deposition rate, and flexible adaptation to the cladding position. However, it has very stringent requirements on the operative conditions, such as a small range of wire feeding rate and precise wire feeding position. The aim of this work was to investigate the laser hot-wire cladding technique, which improved the productivity and stability of the process significantly with respect to laser cold-wire cladding. The external preheating of the filler wire resulted in reduction in required laser power, a low dilution, and a higher deposition rate. A comparison was made between laser cold-wire cladding and laser hot-wire cladding of Inconel 625 on mild steel, with respect to the clad characteristics, microstructure, and hardness. An optimization of the main processing parameters in laser hot-wire cladding, such as the laser power, laser spot size, laser scanning speed, wire feeding orientation and position, wire preheating voltage, and wire feeding rate, was performed. The optimal parameters were used to create a multi-track deposit.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献