Numerical and experimental analysis of ball screw accuracy reliability with time delay expansion under non-constant operating conditions

Author:

Liu Zhifeng123,Yang Hang12,Hun Lianming4,Qi Baobao12ORCID,Lin Zhiwen12,Chen Chuanhai12ORCID

Affiliation:

1. Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun, Jilin Province, China

2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin Province, China

3. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing, China

4. NARI Group Corporation/State Grid Electric Power Research Institute, State Grid Corporation of China, Nanjing, Jiangsu Province, China

Abstract

A ball screw (BS) is a key functional component for precision machining equipment, medical instruments, and intelligent manufacturing production lines. The accuracy reliability of a ball screw plays a key role in the functioning of all such equipment. Since the operating conditions have time-dependent characteristics, the non-constant operating conditions affect the BS accuracy decay. In this paper, the numerical modeling and analysis of the BS accuracy decay are considered under non-constant operating conditions. The BS accuracy reliability under single and multiple non-constant operating conditions is investigated. The experimental findings on accuracy decay under non-constant operating conditions validate the proposed analysis. The average relative error of accuracy decay between the theoretical and the experimental findings is estimated at 10% (in the range of 10.15%–12.66%). The error is evaluated under the three different amplitudes operating conditions, including AL (non-constant axial load), FR (non-constant feed rate), and AL plus FR. The results show that the accuracy decay prediction model successfully predicts the BS accuracy reliability under non-constant operating conditions.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3