Affiliation:
1. School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, China
2. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China
Abstract
Engineering ceramics are increasingly extensively applied in the aerospace, vehicle, armor protection and other fields due to their excellent performances such as high compression strength, high hardness, low density and high protection performance. However, engineering ceramics are typical difficult-to-machine materials, especially in the hole machining under constant feed rate, which limits the promotion and application. In this study, by combining a specially developed novel thin-wall diamond trepanning bit with a low-frequency axial vibration machining, the hole machining process for the constant feed rate of Al2O3 engineering ceramics was experimentally studied and the influence of the low-frequency axial vibration process on the axial drilling force, hole-wall surface roughness and edge chipping size of holes machined was analyzed. The results showed that the low-frequency axial vibration machining obtained a lower axial drilling force and a smaller edge chipping size compared to the traditional drilling process. Moreover, both the axial drilling force and the edge chipping size declined markedly with the rise in amplitude. However, the hole-wall surface roughness presented a rising trend due to the hammering effect of vibration. The process technology proposed in this article realizes the hole machining for a constant feed rate of Al2O3 engineering ceramics and provides a reference for the engineering lot-size hole machining of engineering ceramics.
Funder
National Natural Science Foundation of China
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Experimental study on micro electrical discharge machining of alumina–titanium carbide ceramic materials;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-05-29
2. Performance prediction and parameter optimization of alumina-titanium carbide ceramic micro-EDM hole machining process based on XGBoost;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-05-25
3. Effect of graphite addition on mechanical properties of Al2O3 ceramics by directed laser deposition;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-08-05