Friction stir welding parameters optimization of heterogeneous tailored welded blank sheets of aluminium alloys 6061 and 5083 using response surface methodology

Author:

Ghaffarpour Morteza1,Dariani Bijan Mollaei1,Hossein Kokabi Amir2,Razani Nabi Allah3

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

3. Department of Engineering and High Tech, Iran University of Industries and Mines, Tehran, Iran

Abstract

Today, tailored welded blank sheets have found various applications in automotive, aeronautic and many other industrial fields. One of the most efficient methods for production of tailored welded blank sheets is application of the friction stir welding process. In the present article, the effect of friction stir welding parameters on the microstructure and mechanical properties of heterogeneous tailored welded blank sheets made from aluminium alloys of types 5083-H12 and 6061-T6 with the similar thickness of 1.5 mm is studied. The considered parameters are rotational speed of the tool, linear speed of the tool, pin diameter and shoulder diameter. In order to come by a tailored welded blank sheet with optimal mechanical properties, response surface methodology, which is considered as a strong tool in design of experiments, has been employed to design the experiment matrix, and the corresponding experiments have been conducted under laboratory conditions. Tensile strength of tailored welded blank sheets are determined as the relation in the mathematical model. The optimal condition and objective effects of parameters are determined via this relation. Data variance analysis showed that rotational speed and diameter tool have the most and the least effect on tensile strength, respectively. Rotational and linear speed are more effective than pin and shoulder diameter in input heat, which is produced by friction.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference24 articles.

1. Thomas WM, Nicholas ED, Needham J, Improvements Relating to Friction Welding. International Patent Application No. PCT/GB92/02203, December 1991.

2. Friction stir welding and processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3