A critical energy model for brittle–ductile transition in grinding considering wheel speed and chip thickness effects

Author:

Wu Chongjun12,Li Beizhi1,Liang Steven Y2

Affiliation:

1. School of Mechanical Engineering, Donghua University, Shanghai, China

2. Manufacturing Research Center, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

The ability to predict the critical depth for ductile-mode grinding of brittle materials is important to grinding process optimization and quality control. The traditional models for predicting the critical depth are mainly concerned with the material properties without considering the operation parameters. This article presents a new critical energy model for brittle–ductile transition by considering the strain rate effect brought by the grinding wheel speed and chip thickness. The experiments will be conducted through a high-speed diamond grinder on reaction-sintered silicon carbide materials under different grinding speed and chip thickness. Through detailed analysis of the strain rate effect on the dynamic fracture toughness, a new fracture toughness model will be established based on the Johnson–Holmquist material model (JH-2) and calibrated through experiments based on the indentation fracture mechanics. Then, the new critical model for brittle–ductile transition will be established by introducing the dynamic facture toughness model considering the wheel speed and chip thickness. According to scanning electron microscope observations, the results show that ductile-mode grinding can be obtained through a combination of higher grinding speed and smaller chip thickness. Moreover, the critical value for ductile grinding of brittle materials can be improved through the elevation of the grinding speed or reduction in the chip thickness.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3