A dynamic topology optimization design method based on multiple domain variable parameters

Author:

Li Shipei123ORCID,Niu Ruixia12,Wang Qi34,Wang Tingjun12

Affiliation:

1. Jiangsu Province Engineering Research Center of Intelligent Application for Advanced Plastic Forming, Yangzhou, China

2. Yangzhou Polytechnic Institute, Yangzhou, China

3. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

4. NingboTech University, Ningbo, China

Abstract

Topology optimization has been extensively studied for obtaining desired functional performances of a structure within a predefined design domain. However, existing topology optimization approaches mainly focus on the static structure. Additionally, a structure is generally consisted of multiple materials and its loading state is quite complicated in practical applications, which are seldom considered simultaneously during design optimization. In this paper, a dynamic topology optimization design method based on multiple domain variable parameters is proposed to solve these issues. First, a structure is divided into multiple domains, and an optimal topology model of discrete structure is proposed. Then, the constraints are relaxed and a per-element variable is introduced to process the design variables continuously. To eliminate the undesirable checkerboard patterns, a filtering method is proposed and an approach of projection is presented for determining the volume of the projected structure according to the practical design requirements. After that, a dynamic continuous optimization model is put forward for solving the optimal solution of the complex structure under various working conditions. Finally, the effectiveness and efficiency of the proposed method are validated by constructing a topology optimized link of the press.

Funder

Natural Science Foundation of Zhejiang province, China

National Natural Science Foundation of China

Ningbo Natural Science Foundation, China

Production-education-research cooperation foundation of Jiangsu province, China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3