Study on the surface forming mechanism of the solid–liquid two-phase grinding fluid polishing pipe based on large eddy simulation

Author:

Li Junye1ORCID,Su Ningning1,Wei Lili1,Zhang Xinming1,Yin Yanlu1,Zhao Weihong1

Affiliation:

1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, China

Abstract

To study the surface forming mechanism of the solid–liquid two-phase abrasive flow processing, the large eddy simulation method was used. Taking a 90° stainless steel elbow as the research object, the action mechanism of the dynamic pressure, wall shear force, flow state of the abrasive flow at different cross-sections, formation of the vortex, and trajectory of the abrasive flow on the inner surface of the elbow with abrasive flow composed of solid-phase silicon carbide and liquid-phase hydraulic oil are discussed. This study explores the distribution characteristics of the flow pattern of solid–liquid two-phase abrasive flow. Moreover, the wear and erosion of the abrasive grain and the wall of the workpiece are discussed. The mechanism of surface formation of solid–liquid two-phase abrasive flow is revealed.

Funder

National Natural Science Foundation of China

project of education department of jilin province

Changchun science and technology program of Changchun city

Jilin province science and technology development program of Jilin province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3