Error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool

Author:

Luo Xuan1,Xie Fugui12ORCID,Liu Xin-Jun12,Li Jie3

Affiliation:

1. The State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing, China

2. Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, China

3. AVIC Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu, China

Abstract

5-Degree-of-freedom parallel kinematic machine tools are always attractive in manufacturing industry due to the ability of five-axis machining with high stiffness/mass ratio and flexibility. In this article, error modeling and sensitivity analysis of a novel 5-degree-of-freedom parallel kinematic machine tool are discussed for its accuracy issues. An error modeling method based on screw theory is applied to each limb, and then the error model of the parallel kinematic machine tool is established and the error mapping Jacobian matrix of 53 geometric errors is derived. Considering that geometric errors exert both impacts on value and direction of the end-effector’s pose error, a set of sensitivity indices and an easy routine for sensitivity analysis are proposed according to the error mapping Jacobian matrix. On this basis, 10 vital errors and 10 trivial errors are identified over the prescribed workspace. To validate the effects of sensitivity analysis, several numerical simulations of accuracy design are conducted, and three-dimensional model assemblies with relevant geometric errors are established as well. The simulations exhibit maximal −0.10% and 0.34% improvements of the position and orientation errors, respectively, after modifying 10 trivial errors, while minimal 65.56% and 55.17% improvements of the position and orientation errors, respectively, after modifying 10 vital errors. Besides the assembly reveals an output pose error of (0.0134 mm, 0.0020 rad) with only trivial errors, while (2.0338 mm, 0.0048 rad) with only vital errors. In consequence, both results of simulations and assemblies validate the correctness of the sensitivity analysis. Moreover, this procedure can be extended to any other parallel kinematic mechanisms easily.

Funder

Alexander von Humboldt (AvH) Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive analysis and evaluation of the geometric errors of the rotating axis of five-axis double-pendulum machine tools based on S-shaped samples;The International Journal of Advanced Manufacturing Technology;2023-11-15

2. RCM adjustment for a double-parallelogram based RCM mechanism used for MIS robots;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-07-21

3. Mechanism design and kinematic analysis of a bioinspired 5-DOF parallel driving mechanism;Mechanism and Machine Theory;2023-03

4. Error Sensitivity Analysis and Tolerance Allocation Simulation of a Five-Axis Parallel Machining Robot;Intelligent Robotics and Applications;2023

5. An approach to enhancing machining accuracy of five-axis machine tools based on a new sensitivity analysis method;The International Journal of Advanced Manufacturing Technology;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3