The finite element analysis–based simulation and artificial neural network–based prediction for milling processes of aluminum alloy 7050

Author:

Ma Wei1,Wang Rongqi1ORCID,Zhou Xiaoqin1,Xie Xuefan1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China

Abstract

The cutting forces will generally suffer massive complex factors, such as material deformation, tool eccentricity and system vibration, which will inevitably induce many great difficulties in accurately modeling the cutting force predictions that are very significant to investigate cutting processes. Therefore, the genetic algorithm optimized back-propagation and particle swarm optimization neural networks will be adopted to effectively construct cutting force prediction models. In these two back-propagation prediction models, the main milling parameters will be defined into their input vectors, and the transient milling forces along three different directions will be selected as their output vectors, then the implicit relationships between input and output vectors can be directly generated through practically training and learning these two built back-propagation models with a set of experimental milling force data. Meanwhile, the finite element analysis method will be also used to predict milling forces through programming two easy-to-operate plug-ins that can efficiently construct finite element analysis models, conveniently define processing parameters, and automatically perform mesh generation. Subsequently, the milling forces predicted by the established genetic algorithm optimized back-propagation and particle swarm optimization back-propagation models will be analytically compared with finite element analysis simulations and experiments; also the stress distribution and chip formations of finite element analysis and experiments will be comparatively investigated. Finally, the obtained results clearly indicate that these two back-propagation models built by artificial neural networks can well agree with finite element analysis simulations and experiments, but the particle swarm optimization back-propagation model is superior to the genetic algorithm optimized back-propagation model, which clearly demonstrate the particle swarm optimization back-propagation model has higher efficiencies and accuracies in predicting the average and transient cutting forces for different milling processes on aluminum alloy 7050.

Funder

Department of Science and Technology of Jilin Province

National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3