Investigation on microstructure and mechanical properties of the dissimilar weld between mild steel and stainless steel-316 formed using microwave energy

Author:

Bansal Amit1,Sharma Apurbba K1,Kumar Pradeep1,Das Shantanu2

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India

2. Reactor Control Division, BARC, Mumbai, India

Abstract

Dissimilar weld between a mild steel and a stainless steel-316 was formed by exposing the candidate materials to electromagnetic radiation in the microwave band. Characterisations of the joints were carried out with respect to some aspects of microstructural and mechanical properties of the fusion joints. The joining trials were carried out in an industrial microwave applicator at a fixed frequency of 2.45 GHz and 1.2 kW power while exposed for a duration of 600 s in atmospheric condition. Stainless steel-316 powder was used as the filler material for joining. Principles of microwave hybrid heating were utilised for heating and subsequently melting the metal-based materials in the joint zone. Characterisation of the microwave hybrid heating–induced dissimilar welds were carried out using X-ray diffraction, field emission scanning electron microscopy, microhardness tester and universal testing machine. The presence of carbides and intermetallic in the joint zone were evidenced in the X-ray diffraction results. The microstructures observed through scanning electron microscope show the metallurgical bonding between the substrates to be joined through complete melting of the powder particles and fusion of the base materials. The Vicker’s microhardness in the core of the joint was observed to be 380 HV, which was significantly higher as compared to the base materials due to the formation of dendritic structure and various carbides in the joint zone during microwave hybrid heating process. The average ultimate tensile strength of the joints was measured to be 420 MPa with an elongation of 6.67%. The average flexural strength of the joints was observed to be 787.5 MPa with an elongation of 5.14%. The optimum temperature required for joining was measured using an in-built non-contact infrared pyrometer and was found to be 1360 °C.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3