Computational fluid dynamics simulation and experimental investigations into the magnetic-field-assisted nano-finishing process

Author:

Das Manas1,Jain Vijay K1,Ghoshdastidar Partha S1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India

Abstract

This article deals with a new approach to understand the magnetic-field-assisted nano-finishing process in which computational fluid dynamics is used to simulate the forces. A finite element method is used to evaluate the magnetic field intensity, mathematical modelling is applied to model the nano-finishing operation, and the experiments are conducted to compare the experimental results with the simulated results. A flexible polishing tool comprising a magnetorheological polishing medium is used for this process. The relative motion between the polishing medium and the workpiece surface provides the required finishing action. In the present work, a two-dimensional computational fluid dynamics simulation of a magnetorheological polishing medium inside the workpiece fixture is performed to evaluate the axial and radial stresses developed owing to the flow of magnetically stiffened magnetorheological polishing medium. A finite element analysis is performed in order to find out the direction and the magnitude of the magnetic field. A microstructure of the mixture of magnetic and abrasive particles in the magnetorheological polishing medium is proposed in order to calculate forces acting on an active abrasive particle. Modelling of the surface finish is performed after analysing the surface roughness profile data. Further finishing experiments are conducted in order to compare the simulated surface roughness value with the experimental results and they are found to agree well.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3