Research on error analysis and calibration method of 3-PUU parallel robot

Author:

Chen Mingfang1ORCID,Liang Hongjian1ORCID,He Chaoyin1,Zhang Yongxia1,Huang Liang’en1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China

Abstract

Kinematic calibration is necessary for the pose accuracy improvement of the parallel robots. However, difficulties occur in traditional calibration methods, such as exceeding a large number of error parameters and error accumulation. In this paper, a 3-PUU parallel robot is taken as the research object, and the closed-loop vector method and differential theory are employed to establish an error model. Through quantitative analysis of geometric parametric errors, redundant parameters within the calibration algorithm are meticulously eliminated. By treating the dominant error terms as optimization variables for the mechanism’s parameters, the calibration problem is transformed into a nonlinear system optimization challenge, which effectively avoids the problem of multiple error parameters and accumulation of errors in the traditional method. Further, using the particle swarm algorithm to compute the minimum value of the objective function, one can obtain the actual structural parametric errors of the robot. These errors are then utilized to correct the kinematic model, enabling the calibration of the mechanism’s parameters and ultimately enhancing operation accuracy. Lastly, simulation and experimental validation of the algorithm are carried out. The simulation results indicate that the end-effector position error converges to zero infinitely; and the experimental results indicate that the maximum error of the end-effector in the x, y, z directions and the maximum position error are reduced from 8.53, 11.67, 3.29, and 12.56 mm to 1.09, 1.32, 0.98, and 1.75 mm, respectively. The standard deviation of the position error is reduced from 2.43 to 0.32 mm. The mean error is reduced from 7.76 to 1.02 mm. To sum up, the operation accuracy and stability of the robot are greatly improved.

Funder

the National Key Research and Development Program

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3