A location prediction method for work-in-process based on frequent trajectory patterns

Author:

Cai Haoshu1,Guo Yu1,Lu Kun1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

In the data-rich manufacturing environment, the production process of work-in-process is described and presented by trajectories with manufacturing significance. However, advanced approaches for work-in-process trajectory data analytics and prediction are comparatively inadequate. However, the location prediction of moving objects has drawn great attention in the manufacturing field. Yet most approaches for predicting future locations of objects are originally applied in geography domain. When applied to manufacturing shop floor, the prediction results lack manufacturing significance. This article focuses on predicting the next locations of work-in-process in the workshop. First, a data model is introduced to map the geographic trajectories into the logical space, in order to convert the manufacturing information into logical features. Based on the data model, a prediction method is proposed to predict the next locations using frequent trajectory patterns. A series of experiments are performed to examine the prediction method. The experiment results illustrate the impacts of the user-defined factors and prove that the proposed method is effective and efficient.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Analysis of Social Media’s Proxies for Human Emotion and Cognition;Lecture Notes in Computer Science;2024

2. Vehicle Trajectory Prediction Method for Task Offloading in Vehicular Edge Computing;Sensors;2023-09-18

3. Predictive Manufacturing: Enabling Technologies, Frameworks and Applications;IFIP Advances in Information and Communication Technology;2021

4. An Internet of Things based framework to enhance just-in-time manufacturing;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2017-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3