Energy modeling and a method for reducing energy loss due to cutting load during machining operations

Author:

Lv Jingxiang1,Peng Tao2ORCID,Tang Renzhong2

Affiliation:

1. Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

Abstract

In a typical part manufacturing system, machining operations represent a major proportion of the total energy consumption. The energy consumption (in the form of electricity power) of a machining operation can be divided into four types, that is, standby power, operational power, cutting power and power loss due to cutting load. Power loss due to cutting load includes the power loss caused by the friction of mechanical transmission and the power lost in the motor when the cutting load is applied to the spindle system. While the first three types of power consumption have been studied intensively by previous researchers, the power loss due to cutting load, which accounts for up to 20% of the cutting power consumption during machining operations, has received relatively less attention. This article proposes a novel model to characterize power loss due to cutting load, in which the power lost in the mechanical transmission and in the spindle motor are analyzed and modeled separately. Cutting tests have been carried out to validate the proposed model using two numerical control lathe machines. And a method has been developed for reducing energy loss caused by cutting load, which includes cutting force prediction, power loss due to cutting load prediction and decision making. The method was evaluated through its application in the process design for a shaft part, and the results show a significant saving of up to 70.8% of energy loss caused by cutting load.

Funder

National Natural Science Foundation of China

International Clean Energy Talent Program of China Scholarship Council

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3