Affiliation:
1. Faculty of Mechanical Engineering, University of Niš, Niš, Serbia
2. Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
Abstract
Taking full advantage of what laser cutting technology offers in terms of achieving superb quality cuts at low cost and high production rates requires the optimization of laser cutting parameters. This implies the need to formulate and solve different laser cutting optimization problems. In this article, an optimization model for CO2 laser cutting of mild steel is developed. The laser cutting optimization problem was explicitly formulated as a single-objective optimization problem with five non-linear constraints of the equality, inequality and range type. The goal was to determine the laser cutting parameter values so as to maximize the material removal rate while simultaneously considering practical process constraints related to dross formation, kerf width, perpendicularity deviation, surface roughness and severance energy. Two crossed experimental designs of different resolutions were performed in order to define six mathematical models, which were used in the formulation of the optimization problem. For the purpose of optimization, the exhaustive iterative search algorithm was applied, since it determines solutions whose optimality is guaranteed in the given discrete space of input variable values. The practical usability of the developed laser cutting optimization model and the effectiveness of the applied optimization approach were proved while solving a real case study aimed at the optimization of laser cutting parameters for cutting parts for the furnace industry.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献