Multi-objective optimization of the manufacture of face-milled hypoid gears on numerical controlled machine tool

Author:

Simon Vilmos V1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Department for Machine and Product Design, Budapest University of Technology and Economics, Budapest, Hungary

Abstract

A new method is presented for advanced manufacture of hypoid gears on numerical controlled machine tool. The tool geometry and machine tool settings are determined to introduce the optimal tooth modifications into the teeth of hypoid gears. The goal is to reduce the maximum tooth contact stresses, angular displacement error of the driven gear, and energy losses in the oil film existing between tooth surfaces. The calculation is based on the optimal variation of machine tool settings on the classical machine tool for hypoid gear manufacture. The novelty of the method is that during the machining process of teeth surfaces, the variation of machine tool settings on the cradle-type hypoid generator is conducted by polynomial functions of fifth-order. By an algorithm, this variation of machine tool settings is transferred to the numerical controlled machine tool for hypoid gear manufacture (hypoid generator). The obtained results have shown that by applying the optimal manufacture process, considerable reductions in tooth contact stresses and angular displacement errors of the driven gear, and a moderate reduction in energy losses were obtained. Therefore, by applying this new method in practice, advanced manufacture of hypoid gears on CNC hypoid generator is made possible, resulting improved operating characteristics of the hypoid gear pair.

Funder

National Research, Development and Innovation Fund

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3